Videos

Kinetic Theory: Novel Statistical, Stochastic and Analytical Methods: Forward and inverse problems of a semilinear transport equation

Presenter
October 20, 2025
Keywords:
  • Kinetic theory and Stochastic particle systems
  • mean field plasma and radiation dynamics
  • Boltzmann and Landau type equations and systems
  • hydrodynamic limits
  • enhanced dissipation
  • quasi-neutral limits
  • swarming and flocking
  • mean-field games
MSC:
  • 35Bxx - Qualitative properties of solutions to partial differential equations
  • 35Lxx - Hyperbolic equations and hyperbolic systems {For global analysis
  • see 58J45}
  • 35Q20 - Boltzmann equations {For fluid mechanics
  • see 76P05
  • for statistical mechanics
  • see 82B40
  • 82C40
  • 82D05}
  • 35Q35 - PDEs in connection with fluid mechanics
  • 35Q40 - PDEs in connection with quantum mechanics
  • 35Q49 - Transport equations {For calculus of variations and optimal control
  • see 49Q22
  • for fluid mechanics
  • see 76F25
  • see 82C70
  • 82D75
  • for operations research
  • see 90B06
  • for mathematical programming
  • see 90C08}
  • 35Q70 - PDEs in connection with mechanics of particles and systems of particles
  • 35Q82 - PDEs in connection with statistical mechanics
  • 35Q83 - Vlasov equations {For statistical mechanics
  • 82D75}
  • 35Q84 - Fokker-Planck equations {For fluid mechanics
  • see 76X05
  • 76W05
  • see 82C31}
  • 35Q89 - PDEs in connection with mean field game theory {For calculus of variations and optimal control
  • see 49N80
  • for game theory
  • see 91A16}
  • 35Q91 - PDEs in connection with game theory
  • economics
  • social and behavioral sciences
  • 35Q92 - PDEs in connection with biology
  • chemistry and other natural sciences
  • 60Gxx - Stochastic processes
  • 60Hxx - Stochastic analysis [See also 58J65]
  • 70Fxx - Dynamics of a system of particles
  • including celestial mechanics
  • 70Lxx - Random and stochastic aspects of the mechanics of particles and systems
  • 82D05 - Statistical mechanics of gases
  • 82D10 - Statistical mechanics of plasmas
Abstract
We study forward and inverse problems for a semilinear radiative transport model where the absorption coefficient depends on the angular average of the transport solution. Our first result is the well-posedness theory for the transport model with general boundary data, which significantly improves previous theories for small boundary data. For the inverse problem of reconstructing the nonlinear absorption coefficient from internal data, we develop stability results for the reconstructions and unify an $L^1$ stability theory for both the diffusion and transport regimes by introducing a weighted norm that penalizes the contribution from the boundary region. The problems studied here are motivated by applications such as photoacoustic imaging of multi-photon absorption of heterogeneous media.This is based on a joint work with Yimin Zhong of Auburn University.